8 Relevant Literature ## 8.1 Compendium of Weekend Effect Literature Below is a summary of the literature on the subject of the weekend effect. Due to time constraint, some of the papers have not been summarized; they are indicated with an asterisk (*) in the first column. | Paper
No. | Paper Title | Author(s) | Published | Data Analyzed | Method(s) Used | Conclusions | |--------------|--|---|---------------------------|---|--|---| | 1 | Sunday and Workday Variations in Photochemical Air Pollutants in New Jersey and New York | Cleveland,
Graedel,
Kleiner, &
Warner;
Bell
Laboratories | 1974
Science
V. 186 | May-Sept. 1972-73, Sunday and workday (Mon-Fri) NO, NO ₂ , SO ₂ , aldehydes, CO, THC, CH ₄ , NMHC, aerosols, O ₃ , visible solar radiation, UV solar radiation, wind speed, wind direction, mixing height, temperature, s.d. of vertical wind direction, s.d. of horizonal wind direction, and precipitation, averaged from 5 a.m. to 1 p.m. (except O ₃ is max hrly avg from 11 a.m. to 6 p.m. and 7 a.m. to 8 a.m.; precipitation is daily total; mixing height 7 a.m. reading; temperature daily max, min, and avg) | To compare distribution of Sunday values of a variable at a site with that of workday values. Quantile-quantile (Q-Q) plots. | Aldehydes and CH ₄ slightly lower on Sundays. SO ₂ no consistent pattern. O ₃ maxima slightly higher on Sundays; O ₃ averages much higher. Solar radiation, mixing height, and vertical sigma: higher Sunday quantiles; all other meteorological variables, workday and Sunday quantiles similar. | | Γ | 2 | Weekday vs. | Kinney; | 1974 | 1966-70 oxidant | compared spatial | occurrance decreased with | |---|---|--|--|-----------------------------------|--|--|--| | | 2 | Weekend Oxidant Concentrations | CARB | CAQD
V. VI N. 3 | concentrations in SoCAB | distribution of WE
Effect by season | distance inland; Effect occurred during most months in coastal area and less than half of the months at sites inland. WE Effect covered most of SoCAB during Qtr 1 but only in coastal area during Qtr 3 (July-Sept) | | | S | Weekday vs.
Weekend Oxidant
Concentrations II | Kinney;
CARB | 1974
<i>CAQD</i>
V. VI N. 4 | mid-June - mid-
Sept composite of
Oxidant @
Pomona, San
Bernardino, &
Riverside and
4a.m. temperature
aloft (5000') | 9-year means of oxidant, 5000' temperature, & met-adjusted oxidant | in peak oxidant area of SoCAB, concentrations lowest on Sunday & increase to peak on Wed-Fri before dropping on weekend; when met-adjusted, small drop in [Ox]s from Fri to Sat | | | 4 | A Comparison of Weekend-Weekday O ₃ and HC Concentrations in the Baltimore-Washington Metropolitan Area | Lebron;
Maryland
Dept of
Transportatio
n | 1975
<i>AE</i>
V. 9 | June-Sept. 1972-
73, hrly O ₃ from 11
EST for 8 hrs, avg
0600-0900 HC, all
7 days. | "Smog Index" = sum of squares of amount over 4pphm for each hrly O ₃ . Grouped weekday and weekend avgs. Kruskal-Wallis ANOVA tests equality of means. Linear regression of peak O ₃ on HC on afternoon of same day. | No day of week has significantly higher "smog index". Weekend Index not different from weekdays. Weekdays HC higher than weekends HC. No relationship between O ₃ and HC. Thus control strategies based solely on reduction of 0600-0900 HC emissions may not effectively reduce O ₃ . | | 5 | Weekday-Weekend
Pollutant and
Meteorological
Studies of the Los
Angeles Basin | Levitt &
Chock;
General
Motors
Research
Labs | 1975
APCA
Paper 75-
51.1 | June-Sept., 1972 &
1973: Ox, NO,
NO ₂ , THC, CO, PM
plus Solar
Radiation, Rel.
Humidity, and
Temp. | Percentiles for each hour. Kolmogorov- Smirnov test for significant differences. Daily maxima. | All sites: NO ₂ , PM, HC, NO, CO lower on weekend. Group 1: New(Lhall, Burbank, Reseda higher weekday Ox. Group 2: LA, WLA, Pasadena, Azusa, Pomona similar. Group 3: Lennox, Long Beach, Whittier higher weekend Ox. Lennox, L. Beach, Whittier have higher weekend daily maxima; all others indistinguishable. | |---|---|---|-----------------------------------|---|--|--| | 6 | Weekday-Weekend
Pollutant Studies of
the Los Angeles
Basin | Levitt &
Chock,
General
Motors
Research
Labs | 1976
<i>JAPCA</i>
V. 26 | June-Sept., 1972 & 1973: Ox, NO, NO ₂ , THC, CO, PM | Percentiles for each hour. Kolmogorov- Smirnov test for significant differences. Daily maxima. | All sites: Oxidant higher on weekends than weekdays prior to 0900 am, due to NO being an ozone scanvenger => not consistent w/ smog chamber results. North region (Newhall): weekday ox higher than weekends at 0.10 level; Central region (Los Angeles): low ox differs insignificantly; South region (Lennox): no difference. | | 8* | Photochemical Air Pollution: Weekend- Weekday Differences | Elkus & Wilson; Dept of Chemistry, UC San Diego. | 1977
<i>AE</i>
V. 11 | Avg hrly concentrations of CO, NO, NO ₂ , RHC (THC - methane), and Ox. 1965-1972, except for some sites, from LAAPCD; Traffic count data from Caltrans. | Daily profile of CO, NO, NO ₂ and Ox. Hr by hr weekly patterns of CO and Ox. 24-hr avg pollutant levels for each day of week at 10 stations. Avg daily hrly maximum for Ox. Autocorrelation (to test that measurements made 1 week apart are independent). Fractional change bet. WkDay and WkEnd = (WE - WD)/WD; then take median. | nidnight, drop early morning, then peak 8 AM on weekdays, then rise again late afternoon. NO2 similar to NO & CO, except peak is later. Ox similar. 2) WkEnd and wkday structures for CO differ; Ox shows temporal pattern almost independent of day of week. 3) WkEnd drop in annual daily avg CO, NO, RHC, and NO2 while avg Ox levels rise on weekends. 4) Large fractional decrease of pollutants on weekends at 95% level (at most stations). 5) Significant increase in Ox on weekends at 95% level (at most stations). 6) Traffic is 20% lower on weekends than weekdays. Conclusion: Care must be taken when designing short-term Ox control strategies. Controls which mimic weekend emissions changes would be ineffective if applied to random days. | |----|---|--|-------------------------------|--|--|--| | | the "Sunday Effect" | Farrow, &
Weber | <i>E</i> S& <i>T</i>
V. 11 | | | | | 9 | Weekday-Weekend
Ozone
Concentrations in
the Northeast United
States | Cleveland &
McRae;
Bell
Laboratories | 1978
ES&T
V. 12 | 28 sites (NJ, NY, CT, MA): O ₃ , May-Sept. 1974-75 at 21 sites, 73-75 at 6 sites, 70-75 at 1 site. 10 sites: hrly CO, May-Sept. 1974-75. Traffic counts between NJ and NY, May-Sept. 1974-75. | Empirical quantile-
quantile (EQQ)
plots.
Upper quarter
means.
Time series with
periodic means,
variances and
autocorrelations (of
square root daily
maximum O3) | O ₃ reduced on weekends and Monday, then gradually increased on Tues to Fri.; same for traffic patterns. (Possible) Traffic reduction causes Monday O ₃ reduction. For weekend vs Tues-Fri: CT sites, large O ₃ reductions on weekend; MA sites, moderate to slight reductions; NY, NJ sites, little change. | |-----|---|---|----------------------------|--|--|---| | 10 | Day of Week Variations of Photochemical Pollutants in the St. Louis Area | Karl;
US EPA | 1978
<i>AE</i>
V. 12 | 25 sites grouped into inner, transitional, and outer categories based on pollutant concentrations, distance from downtown and emission patterns of THC and NO _x . Ox, NO, NO ₂ , THC, surface temp., wind speed. | Descriptive statistics. Diurnal plots. | Difference in concentrations of NO, NO ₂ , NMHC, and O ₃ from Sundays to workdays depended on distance of the measurement from the urban area. O ₃ decreased from Sundays to workdays inside the city. Meteorological conditions not responsible for these differences. (Possible) NO increase from Sunday to workdays lead to O ₃ decrease on workdays inside the city. | | 11* | On the Weekday-
Weekend Oxidant
Differences in the
California South
Coast Air Basin | Chock &
Pierson;
GM | 1978
GMRL
Pub. 2799 | | | | | 12 | Ozone Episode
Experience in the
South Coast Air
Basin | Mulberg;
CARB | 1978
<i>CAQD</i>
V. X N. 1 | 1964-77 Stage II & III oxidant episodes in SoCAB | frequency by day-
of-week | Stage III Episodes monst frequent on Thur. and non-existent on weekend; Stage II Episodes fewest on Sun, increasing during week to peak on Fri. | |-----|---|--|----------------------------------|---|--|---| | 13* | Carryover: The Impact of Aged Pollutants on Air Quality | White | 1978
manuscript | | | | | 14 | Weekend/Weekday
Differences in
Oxidants and Their
Precursors | Horie, Cassmassi, Lai, & Gurtowski; Technology Service Corporation | 1979
EPA-
450/4-79-
013 | May-Sept. 1973-76, Washington D.C., Baltimore, Philadelphia, New York-Newark, and Boston. ambient pollutants at 22 sites (no rural); surface meteorological observations at 12 sites; upper-air meteorological measurements at 3 sites. | 1) normal WE/WD: weekends as Sat, Sun; weekdays as Mon-Fri. 2) Sunday WE/WD: weekends as Sun; weekdays as Tues-Fri. t-test & visual test of box displays. Meteorological adjustments using tree classifications. Ox, precursors NO, NO ₂ , NO ₂ /NO _X , NMHC, THC. 95% CI for median. Wilcoxin rank sum test for NO ₂ /NO _X ratio difference. | Among 22, 3 sites show consistently significantly lower Ox on weekends. %change (WE-WD) larger for Sunday vs Tues-Fri than for Sat-Sun vs Mon-Fri. Most important meteorological variables to explain daily max Ox: daily max temp., visibility, wind direction, mixing height (using 'tree'). Among 8, 5 sites show significantly lower 6-9a.m. avg NO on weekends. Among 4, 2 sites sign. lower 6-9a.m. NMHC and THC weekends under <i>Sunday</i> WE/WD definition; all sign. lower weekend level under <i>normal</i> WE/WD definition. (Possible) Simultaneous control of NO _X and NMHC less effective than HC control. | | 15* | Response to: A statistically tested short-term oxidant control strategy | Chock &
Pierson | 1980
<i>AE</i>
V. 14 | | | | |-----|---|--|------------------------------------|---|---|---| | 16 | Weekday/Weekend
Differences in
Diurnal Variation in
CO, NO ₂ , and
Ozone - Implications
for Control
Strategies | Hoggan,
Hsu, Kahn, &
Call;
SCAQMD | 1989
AWMA
Paper 89-
125.5 | Diurnal: CO, NO ₂ ,
O ₃ , SO ₂ , NMHC,
NO for 1985-87,
82-84, 78-80.
Day of Week:
PM10. | t-tests for equality of Saturday vs. M-F means and Sunday vs. M-F means of daily max 1-hr average and 24-hr average, using Bonferroni adjusted significance levels. Mean #exceedances of AAQS by day of week for diurnal concentrations of criteria pollutants. | #exceedances of AAQS for Sat and Sun lower than for Mon-Fri. O ₃ : though NO _X and NMHC lower on weekends, O ₃ slightly higher on weekends for most sites, sensitive to precursor concentrations, their spatial and temporal distributions, HC/NO _X ratios, and sunlight intensity by PM10. Need further study. Traffic data suggests time and place of controls on pollutant emissions are important. | | 17 | An Analysis of
Weekend/Weekday
Differences in the
South Coast Air
Basin of California | Zeldin, Horie,
& Mirabella,
Southern
California
Edison | 1989
AWMA
Paper 89-
125.6 | May-Oct. 1984-86, daily max 1-hr avg O ₃ , avg 0500-0800 hrly NO ₂ and NO _X . | t-tests for differences between Sat, Sun, Mon and 'typical' weekday (Wed, Thurs) Carryover effect: NO ₂ /NO _X ratio. Basin divided into 6 geographic regions: Coastal, Metro, San Gabriel Valley, Inland, Inland Valley, and Mountain. | Coastal and Metro: O ₃ higher on Sat and Sun. S. Gabriel Valley: O ₃ highest on Sat, Sun differ from weekday. Inland: O ₃ insignificantly higher on Sat. Inland Valley and Mountain: improved O ₃ on Sun., lower O ₃ on weekends. Thus O ₃ results consistent with airshed models. Coastal and Metro: lower NO _X on weekends. NO ₂ /NO _X ratios: highest on Sundays, about same on Sat and weekdays. | | 18* | Analysis of ozone air | Rao, Sistla, | 1991 | | | | | | quality over the New
York metropolitan
area | Schere &
Godowitch | in <u>Air</u> Pollution Modeling & its Applicatio ns VIII Plenum Press | | | | |-----|---|-------------------------------------|--|---|---|---| | 19 | Weekday vs. Weekend Ambient Ozone Concentrations: Discussion and Hypotheses with Focus on Northern California | Altshuler,
Arcado, &
Lawson | 1995
<i>JAWMA</i>
V.45 | Mean hourly ozone,
NO ₂ , and CO:
1981, 1982, 1991,
1992.
Emission inventory
of ROG, NO _X :
1980, 1990. | Diurnal plots. Percent change in emissions. EKMA diagrams. | In Northern CA, weekend effect is stronger in the 1990s than in the 1980s. Weekend effect combined w/ changes in emissions could provide a clue to whether an area is NO _X or ROG limited wrt ozone formation. | | 20* | Effect of alternative
boundary conditions
on predicted ozone
control strategy
performance: a case
study in the Los
Angeles Area | Winer, Cass,
& Harley | 1995
<i>AE</i>
V. 29 | | | | | 21 | Characterization of
ozone episodes in
SoCAB: Effects of
air parcel residence
time and we/wd
differences | Blier, Winer,
Hansen, &
Verma | 1996
ARB
Contract
93-316 | O ₃ , CO, NO ₂ , NO _X ,
TSP, Met, & NO
1986-1993 | Correlation Contrast, Air Parcel Residence Estimation, Trend Analysis, Multi- Linear Regression, CART SoCAB | O ₃ -NO ₂ & O ₃ -NO _X Differences
between 86-89 & 90-93
O ₃ Reduction Trend at all times
all days of the Week
Max % Decrease in NO _X Areas
had the largest improvements for
the worst O ₃ Episodes | | 22 | An analysis of the weekday-weekend behavior of ambient concentrations of ozone and its precursors | Tran,
Larsen, &
Austin | 1996 | (draft manuscript,
superseded by
Austin and Tran,
1999) | | |-----|--|------------------------------|---|--|--| | 23 | Day of week contrasts for ozone, NOx and CO | Hemphill &
Sullivan | 1997 | (draft to be sent later) | | | 24* | PAMS Data Analysis: An investigation of local meteorological effects on ozone during OTAG 1995 episode and wd/we differences in the Northeast Corridor | Vukovich | 1997
SAIC
report to
EPA
OAQPS | | | | 25* | Weekend-Weekday Differences of Near- Surface Ozone Concentrations in Switzerland for Different Meteorological Conditions | Bronnimann
& Nue | 1997
<i>AE</i>
V. 31 | | | | 26 | A fuel-based inventory for heavy-duty diesel truck emissions | Dreher &
Harley | 1998
<i>JAWMA</i>
V. 48 | Daily traffic
(W.I.M.) counts by
vehicle class (light-
duty vehicles and
diesel trucks) | Ratio of daily total
to weekly avg traffic
counts by vehicle
class, for each day
of week.
Hourly count as a
percentage of total
daily count. | HD vehicle travel declined from weekdays to weekends. Decreases on off-road mobile source and stationary source activity may contribute to differences. Changes in exhaust emissions due to reduced diesel truck activity may lead to lower fine PM on weekends. Lower fine PM emissions from diesel trucks may lead to increased photolysis rates and ozone formation on weekends. | |----|---|-------------------------------------|--------------------------------------|---|---|---| | 27 | Seasonal and
weekly pattern of
ozone over the
OTAG region | Husar | 1998
AWMA
Paper 98-
MPB.06P | 1986-1995 daily
max-hr O₃ in
OTAG region | 50 th , 75 th , 90 th , 95 th percentiles of OTAG-wide averaged O ₃ by day-of-week; exceedances of 120 ppb | no weekday pattern at 50 th %ile, weak at 75 th %ile, but apparent at 90 th & 95 th %iles. O ₃ lower on weekends than weekdays (2ppb effect); O ₃ lowest on Sun, increasing Mon & Tues, ~ constant Wed - Fri, declining on Sat & Sun.; exceedances of 120ppb much less frequent on Sun than on Fri. | | 28 | A preliminary study of the weekday/weekeend differences in ozone and its precursors in large urban regions and their implications toward control strategies | Vukovich,
Jeffries, &
Guinnup | 1998
EPA
Draft | Hourly O ₃ , NO _x ,
VOC, NMHC:
weekday vs
weekend.
June-July, 1995.
Washington DC,
Philadelphia, New
York, Houston | Sum of 3 hourly values. Average across sites. Diurnal profiles. Exceedances. | Weekend O ₃ higher on weekend than weekday while NO _X higher on weekdays. Reductions in NO _X and VOC may have a localized disbenefit effect on ozone, especially on ozone-conducive days. Differences in emission inventory between wd and wk day must be quantified in order to evaluate air quality models. | | 29 | Analysis of Weekend-Weekday Differences in Ozone and Ozone Precursors in the South Coast (Los Angeles) Air Basin | Stoeckenius,
Taylor,
Yarwood, &
Lee,
ENVIRON | 1998 | (see response,
item #30, below) | | | |----|---|---|--|--|--|--| | 30 | Response to
Environ's Report | ARB | 1998
ARB
LEV II
staff
report
Appendix I | | | The simultaneous occurrence of higher ozone on weekend and lower NO _X emissions do not prove the disbenefit of control strategies, given the reduction in ozone on all days of week. | | 31 | Evaluation of recent NO ₂ and ozone levels in Southern California on weekdays and weekends using EPA AIRS data: Implications for the LEV II proposal | Darlington &
Kahlbaum;
Air
Improvement
Resource | 1998
Report to
Navistar | Trends in HC and NO _X inventories, SC. Trends in O ₃ and NO ₂ : weekdays & weekends, 1986-1998. Vehicle activity by day of week, to assess correlation with changes in O ₃ and NO ₂ . | Avg max 1-hour ozone and NO ₂ ; 8-hour avg O ₃ . By day of week. | Ambient NO₂ and ozone down since late 1980s. MV program reduced ambient HC significantly. Ozone increased on weekends, showing a region is at a lower VOC/NO_X ratio. Ambient NO₂ reduction appears to cause the O₃ increase during weekends. Further reduction in NO_X and NO₂ w/o reductions in ambient HC will make it more difficult to lower ozone. | | 32 | Analysis of
weekday/weekend
differences in air
quality and
meteorology in
SoCAB | Blier & Winer | 1999
ARB
Contract
95-334 | O ₃ , CO, NO ₂ ,
NO _X , NMHC,
VOC, RWP-
RASS, PM10,
PAMS, Temp, RH,
Aerosols, & NO
1986-1996 | High & Middle O ₃ Episode Investigation, Gridded Met Analysis, Correlation Contrast, Trend Analysis, SoCAB | O ₃ Reduction Trend at all times
all days of the Week
O ₃ Season Shorter & Shifted
Forward
Modest Surface Carryover
1994-95 NO _X & NMHC
Reduction Sat-Sun but Sun
lower O ₃ than Sat | |-----|--|------------------------|---|---|--|---| | 33 | A characterization of the weekday-weekend behavior of ambient ozone concentrations in California | Austin &
Tran | 1999
7 th Intl
Conferenc
e on Air
Pollution;
Palo Alto,
CA | Daily max 1-hour ozone, May 17 - October 15, 1992- 1998. South Coast Air Basin, San Francisco Bay Air Basin, and Sacramento Valley. | Adjust for effects of meteorology and outliers: fit smooth curves and analyze residuals (adjusted concentrations). Use principal components to view results and categorize behavior. Test for significant day-to-day changes in ozone at 5% level. | 1. Typical pattern for weekend effect: increase from Friday to Saturday, slight increase from Saturday to Sunday, then decrease on Monday. 2. Weekend effect strong at urban sites in South Coast and San Francisco Bay, less prominent at sites far downwind from emission sources; stronger post-CBG (1996-1998) compared to pre-CBG (1992-1994 or 1995) 3. It does not exist in Sacramento Valley. | | 34* | Spatial mapping of VOC and NO _X - Limitation of Ozone Formation in Central California | Blanchard &
Fairley | 1999
manuscript | | | | | 35* | Sensitivity Analysis of Weekday/Weekend Differences in Photochemical Air Pollution | Vuilleumier | 1999
PERF
paper | | | | * paper not yet summarized. AE = Atmospheric Environment APCA = Air Pollution Control Association AWMA = Air & Waste Management Association CAQD = California Air Quality Data quarterly report ES&T = Environmental Science & Technology GMRL = General Motors Research Laboratory JAWMA = Journal of the Air & Waste Management Association JAPCA = Journal of the Air Pollution Control Association PERF = Petroleum Environmental Research Forum